Studi Density Functional Theory (DFT) Pengaruh Co-doping Zn dan N pada TiO2 Anatas

Muhammad Shofiyullah*    -  Universitas Islam Negeri Walisongo Semarang, Indonesia
Wirda Udaibah  -  Universitas Islam Negeri Walisongo Semarang, Indonesia
Ika Nur Fitriani  -  Universitas Islam Negeri Walisongo Semarang, Indonesia

(*) Corresponding Author

Titanium dioksida (TiO2) merupakan salah satu bahan yang menjanjikan yang memenuhi persyaratan fotokatalis. Penelitian ini mempelajari pengaruh doping Zn dan N pada struktur geometri dan elektronik TiO2 anatas. Untuk mengetahui struktur dan proses kinerja fotokatalitik digunakan perhitungan density functional theory (DFT) dengan algoritma generalized gradient approximation (GGA) menggunakan parameterisasi Perdew-Burke-Ernzerhof (PBEsol).  Perhitungan struktur elektronik menggunakan parameter Hubbard U. Setelah optimasi terjadi distorsi volume kisi doping Zn  1,011  Å, doping N 1,209 Å dan co-doping Zn-N 1,646 Å. Data tersebut menunjukkan bahwa doping dapat mempengaruhi perubahan struktural. Perhitungan struktur elektronik menghasilkan celah pita TiO2 murni sebesar 3,18 eV, kemudian terjadi penyempitan celah pita yang disebabkan oleh dopan. Celah pita doping Zn 2,9  eV, doping N 2,78 eV dan co-doping Zn-N 2,74 eV. Struktur elektronik baru hasil doping  tidak hanya menyebabkan penyempitan celah pita tapi juga dapat menghambat rekombinasi pasangan elektron-hole, secara signifikan dapat meningkatkan aktivitas fotokatalitik TiO2 di daerah cahaya tampak.

Keywords: Aktivitas Fotokatalitik; Co-doping; TiO2 anatas

  1. Bayan, E. M., Lupeiko, T. G., Pustovaya, L. E., Volkova, M. G., Butova, V. V., & Guda, A. A. (2020). Zn–F co-doped TiO2 nanomaterials: Synthesis, structure and photocatalytic activity. Journal of Alloys and Compounds, 822, 153662.
  2. Chang, S. min, & Liu, W. szu. (2014). The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts. Applied Catalysis B: Environmental, 156–157, 466–475.
  3. Chen, H., Li, X., Wan, R., Kao-walter, S., Lei, Y., & Leng, C. (2018). A DFT study on modification mechanism of ( N , S ) interstitial co-doped. Chemical Physics Letters, 695, 8–18.
  4. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21(39).
  5. Gomes, J. F., Lopes, A., Bednarczyk, K., Gmurek, M., Stelmachowski, M., Zaleska-Medynska, A., Quinta-Ferreira, M. E., Costa, R., Quinta-Ferreira, R. M., & Martins, R. C. (2018). Effect of noble metals (Ag, pd, pt) loading over the efficiency of tio2 during photocatalytic ozonation on the toxicity of parabens. ChemEngineering, 2(1), 1–14.
  6. Jani, N. A., Haw, C., Chiu, W., Rahman, S. A., Khiew, P., Lim, Y., Abd-Shukor, R., & Hamid, M. A. A. (2020). Photodeposition of Ag Nanocrystals onto TiO2 Nanotube Platform for Enhanced Water Splitting and Hydrogen Gas Production. Journal of Nanomaterials, 2020.
  7. Kuo, C. Y., Jheng, H. K., & Syu, S. E. (2019). Effect of non-metal doping on the photocatalytic activity of titanium dioxide on the photodegradation of aqueous bisphenol A. Environmental Technology (United Kingdom), 0(0), 1–24.
  8. Li, R. Q., Li, D. X., Zhou, D. T., Qin, X. M., & Yan, W. J. (2019). Theoretical studies on the electronic structures and optical properties of (Cu, C)-codoped rutile TiO 2 from GGA+U calculations. Journal of Molecular Graphics and Modelling, 90, 104–108.
  9. Li, X., Shi, J., Chen, H., Wan, R., Leng, C., Chen, S., & Lei, Y. (2017). A DFT study on the modification mechanism of (Cr, C) co-doping for the electronic and optical properties of anatase TiO2. Computational Materials Science, 129, 295–303.
  10. Lin, Y., Jiang, Z., Zhu, C., Zhang, R., Hu, X., Zhang, X., Zhu, H., & Lin, S. H. (2017). The electronic structure, optical absorption and photocatalytic water splitting of (Fe + Ni)-codoped TiO2: A DFT + U study. International Journal of Hydrogen Energy, 42(8), 4966–4976.
  11. Liu, X., Li, Y., Wei, Z., & Shi, L. (2018). A Fundamental DFT Study of Anatase (TiO2) Doped with 3d Transition Metals for High Photocatalytic Activities. Journal Wuhan University of Technology, Materials Science Edition, 33(2), 403–408.
  12. Pack, J. D., & Monkhorst, H. J. (1977). “special points for Brillouin-zone integrations”-a reply. Physical Review B, 16(4), 1748–1749.
  13. Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X., & Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100(13), 1–4.
  14. Pragathiswaran, C., Smitha, C., Barabadi, H., Al-Ansari, M. M., Al-Humaid, L. A., & Saravanan, M. (2020). TiO2@ZnO nanocomposites decorated with gold nanoparticles: Synthesis, characterization and their antifungal, antibacterial, anti-inflammatory and anticancer activities. Inorganic Chemistry Communications, 121(August), 108210.
  15. Reddy, K. M., Manorama, S. V., & Reddy, A. R. (2003). Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 78(1), 239–245.
  16. Rezaee, M., Mousavi Khoie, S. M., & Liu, K. H. (2011). The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: An XRD and Raman spectroscopy investigation. CrystEngComm, 13(16), 5055–5061.
  17. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2photocatalysis: Mechanisms and materials. Chemical Reviews, 114(19), 9919–9986.
  18. Shalini, S., Kumar, T. S., Prasanna, S., & Balasundaraprabhu, R. (2020). Investigations on the effect of co-doping in enhancing the performance of nanostructured TiO2 based DSSC sensitized using extracts of Hibiscus Sabdariffa calyx. Optik, 212(March).
  19. Sun, M., Liu, H., Sun, Z., & Li, W. (2020). Donor-acceptor codoping effects on tuned visible light response of TiO2. Journal of Environmental Chemical Engineering, 8(5), 104168.
  20. Tehare, K. K., Bhande, S. S., Mutkule, S. U., Stadler, F. J., Ao, J. P., Mane, R. S., & Liu, X. (2017). Low-temperature chemical synthesis of rutile and anatase mixed phase TiO2nanostructures for DSSCs photoanodes. Journal of Alloys and Compounds, 704, 187–192.
  21. Wu, H. C., Lin, S. W., & Wu, J. S. (2012). Effects of nitrogen concentration on N-doped anatase TiO 2: Density functional theory and Hubbard U analysis. Journal of Alloys and Compounds, 522, 46–50.
  22. Yuan, R., Liu, D., Wang, S., Zhou, B., & Ma, F. (2018). Enhanced photocatalytic oxidation of humic acids using Fe3+-Zn2+ co-doped TiO2: The effects of ions in aqueous solutions. Environmental Engineering Research, 23(2), 181–188.

Open Access Copyright (c) 2020 Walisongo Journal of Chemistry
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

WJC: Walisongo Journal of Chemistry
Published by the Department of Chemistry
Faculty of Science and Technology
Universitas Islam Negeri Walisongo Semarang
Jl Prof. Dr. Hamka Kampus III Ngaliyan Semarang 50185
Website: https://journal.walisongo.ac.id/index.php/wjc
Email: wjc@walisongo.ac.id  wjc@walisongo.ac.id

ISSN: 2549-385X (Print)
ISSN: 2621-5985 (Online)




 

apps